[1]
D. N. Goldberg. A variationally derived, depth-integrated approximation to a higher-order glaciological flow model. Journal of Glaciology 57, 157–170 (2011).
[2]
L. Favier, N. C. Jourdain, A. Jenkins, N. Merino, G. Durand, O. Gagliardini, F. Gillet-Chaulet and P. Mathiot. Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO (v3. 6)–Elmer/Ice (v8. 3). Geoscientific Model Development 12, 2255–2283 (2019).
[3]
P. R. Holland, A. Jenkins and D. M. Holland. The response of ice shelf basal melting to variations in ocean temperature. Journal of Climate 21, 2558–2572 (2008).
[4]
W. M. Lazeroms, A. Jenkins, G. H. Gudmundsson and R. S. Van De Wal. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. The Cryosphere 12, 49–70 (2018).
[5]
A. Jenkins. A one-dimensional model of ice shelf-ocean interaction. Journal of Geophysical Research: Oceans 96, 20671–20677 (1991).
[6]
R. Reese, T. Albrecht, M. Mengel, X. Asay-Davis and R. Winkelmann. Antarctic sub-shelf melt rates via PICO. The Cryosphere 12, 1969–1985 (2018).
[7]
R. J. Arthern, R. C. Hindmarsh and C. R. Williams. Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations. Journal of Geophysical Research: Earth Surface 120, 1171–1188 (2015).
[8]
O. V. Vasilyev and N. K.-R. Kevlahan. An adaptive multilevel wavelet collocation method for elliptic problems. Journal of Computational Physics 206, 412–431 (2005).